An Eulerian method for computing the coherent ergodic partition of continuous dynamical systems

نویسندگان

  • Guoqiao You
  • Shingyu Leung
چکیده

We develop an efficient Eulerian numerical approach to extract invariant sets in a continuous dynamical system in the extended phase space (the x− t space). We extend the idea of ergodic partition and propose a concept called coherent ergodic partition for visualizing ergodic components in a continuous flow. Numerically, we first apply the level set method [33] and extend the backward phase flow method [25] to determine the long time flow map. To compute all required long time averages of observables along particle trajectories, we propose an Eulerian approach by simply incorporating flow maps to iteratively interpolate those short time averages. Numerical experiments will demonstrate the effectiveness of the approach. As an application of the method, we apply the approach to the field of geometrical optics for high frequency wave propagation and propose to use the result from the coherent ergodic partition as a criteria for adaptivity in typical Lagrangian ray tracing methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A local approach to the entropy of countable fuzzy partitions

This paper denes and investigates the ergodic proper-ties of the entropy of a countable partition of a fuzzy dynamical sys-tem at different points of the state space. It ultimately introducesthe local fuzzy entropy of a fuzzy dynamical system and proves itto be an isomorphism invariant.

متن کامل

SOME ERGODIC PROPERTIES OF HYPER MV {ALGEBRA DYNAMICAL SYSTEMS

This paper provides a review on major ergodic features of semi-independent hyper MV {algebra dynamical systems. Theorems are presentedto make contribution to calculate the entropy. Particularly, it is proved that thetotal entropy of those semi-independent hyper MV {algebra dynamical systemsthat have a generator can be calculated with respect to their generator ratherthan considering all the par...

متن کامل

RELATIVE INFORMATION FUNCTIONAL OF RELATIVE DYNAMICAL SYSTEMS

 In this paper by use of mathematical modeling of an observer [14,15] the notion of relative information functional for relative dynamical systemson compact metric spaces is presented. We extract the information function ofan ergodic dynamical system (X,T) from the relative information of T fromthe view point of observer χX, where X denotes the base space of the system.We also generalize the in...

متن کامل

A method for visualization of invariant sets of dynamical systems based on the ergodic partition.

We provide an algorithm for visualization of invariant sets of dynamical systems with a smooth invariant measure. The algorithm is based on a constructive proof of the ergodic partition theorem for automorphisms of compact metric spaces. The ergodic partition of a compact metric space A, under the dynamics of a continuous automorphism T, is shown to be the product of measurable partitions of th...

متن کامل

Coherent structures and isolated spectrum for Perron–Frobenius cocycles

We present an analysis of one-dimensional models of dynamical systems that possess “coherent structures”; global structures that disperse more slowly than local trajectory separation. We study cocycles generated by expanding interval maps and the rates of decay for functions of bounded variation under the action of the associated Perron–Frobenius cocycles. We prove that when the generators are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 264  شماره 

صفحات  -

تاریخ انتشار 2014